British Journal of Ophthalmology, September 2020


The ability of deep learning (DL) algorithms to identify eyes with neovascular age-related macular degeneration (nAMD) from optical coherence tomography (OCT) scans has been previously established. We herewith evaluate the ability of a DL model, showing excellent performance on a Korean data set, to generalize onto an American data set despite ethnic differences. In addition, expert graders were surveyed to verify if the DL model was appropriately identifying lesions indicative of nAMD on the OCT scans.


Model development data set—12 247 OCT scans from South Korea; external validation data set—91 509 OCT scans from Washington, USA. In both data sets, normal eyes or eyes with nAMD were included. After internal testing, the algorithm was sent to the University of Washington, USA, for external validation. The area under the receiver operating characteristic curve (AUC) and precision-recall curve (AUPRC) were calculated. For model explanation, saliency maps were generated using Guided GradCAM.


On external validation, AUC and AUPRC remained high at 0.952 (95% CI 0.942 to 0.962) and 0.891 (95% CI 0.875 to 0.908) at the individual level. Saliency maps showed that in normal OCT scans, the fovea was the main area of interest; in nAMD OCT scans, the appropriate pathological features were areas of model interest. Survey of 10 retina specialists confirmed this.


Our DL algorithm exhibited high performance for nAMD identification in a Korean population, and generalised well to an ethnically distinct, American population. The model correctly focused on the differences within the macular area to extract features associated with nAMD.